IT++ Logo
Functions
Bessel Functions
Base Module

Functions

double itpp::besselj (int nu, double x)
 Bessel function of first kind of order nu for nu integer.
 
vec itpp::besselj (int nu, const vec &x)
 Bessel function of first kind of order nu for nu integer.
 
double itpp::besselj (double nu, double x)
 Bessel function of first kind of order nu. nu is real.
 
vec itpp::besselj (double nu, const vec &x)
 Bessel function of first kind of order nu. nu is real.
 
double itpp::bessely (int nu, double x)
 Bessel function of second kind of order nu. nu is integer.
 
vec itpp::bessely (int nu, const vec &x)
 Bessel function of second kind of order nu. nu is integer.
 
double itpp::bessely (double nu, double x)
 Bessel function of second kind of order nu. nu is real.
 
vec itpp::bessely (double nu, const vec &x)
 Bessel function of second kind of order nu. nu is real.
 
double itpp::besseli (double nu, double x)
 Modified Bessel function of first kind of order nu. nu is double. x is double.
 
vec itpp::besseli (double nu, const vec &x)
 Modified Bessel function of first kind of order nu. nu is double. x is double.
 
double itpp::besselk (int nu, double x)
 Modified Bessel function of second kind of order nu. nu is double. x is double.
 
vec itpp::besselk (int nu, const vec &x)
 Modified Bessel function of second kind of order nu. nu is double. x is double.
 

Detailed Description

end of math group

Function Documentation

ITPP_EXPORT double itpp::besselj ( int  nu,
double  x 
)

Bessel function of first kind of order nu for nu integer.

The bessel function of first kind is defined as:

\[ J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k} \]

where $\nu$ is the order and $ 0 < x < \infty $.

Definition at line 44 of file bessel.cpp.

Referenced by itpp::FIR_Fading_Generator::Jakes_filter().

ITPP_EXPORT double itpp::bessely ( int  nu,
double  x 
)

Bessel function of second kind of order nu. nu is integer.

The Bessel function of second kind is defined as:

\[ Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)} \]

where $\nu$ is the order and $ 0 < x < \infty $.

Definition at line 68 of file bessel.cpp.

ITPP_EXPORT double itpp::besseli ( double  nu,
double  x 
)

Modified Bessel function of first kind of order nu. nu is double. x is double.

The Modified Bessel function of first kind is defined as:

\[ I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) \]

where $\nu$ is the order and $ 0 < x < \infty $.

Definition at line 91 of file bessel.cpp.

ITPP_EXPORT double itpp::besselk ( int  nu,
double  x 
)

Modified Bessel function of second kind of order nu. nu is double. x is double.

The Modified Bessel function of second kind is defined as:

\[ K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)] \]

where $\nu$ is the order and $ 0 < x < \infty $.

Definition at line 103 of file bessel.cpp.

SourceForge Logo

Generated on Sat May 25 2013 16:32:27 for IT++ by Doxygen 1.8.2