Numerical integration routines. More...
Functions | |
template<typename Ftn > | |
double | itpp::quad (Ftn f, double a, double b, double tol=std::numeric_limits< double >::epsilon()) |
ITPP_EXPORT double | itpp::quad (double(*f)(double), double a, double b, double tol=std::numeric_limits< double >::epsilon()) |
template<typename Ftn > | |
double | itpp::quadl (Ftn f, double a, double b, double tol=std::numeric_limits< double >::epsilon()) |
ITPP_EXPORT double | itpp::quadl (double(*f)(double), double a, double b, double tol=std::numeric_limits< double >::epsilon()) |
Numerical integration routines.
double itpp::quad | ( | Ftn | f, |
double | a, | ||
double | b, | ||
double | tol = std::numeric_limits<double>::epsilon() |
||
) |
1-dimensional numerical Simpson quadrature integration
Calculate the 1-dimensional integral
Uses an adaptive Simpson quadrature method. See [Gander] for more details. The integrand is specified as a templated function object.
Example:
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http://www.inf.ethz.ch/personal/gander.
Definition at line 162 of file integration.h.
References itpp::sum().
Referenced by itpp::EXIT::apriori_mutual_info().
ITPP_EXPORT double itpp::quad | ( | double(*)(double) | f, |
double | a, | ||
double | b, | ||
double | tol = std::numeric_limits< double >::epsilon() |
||
) |
1-dimensional numerical Simpson quadrature integration
Calculate the 1-dimensional integral
Uses an adaptive Simpson quadrature method. See [Gander] for more details. The integrand is specified as a function:
Example:
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http://www.inf.ethz.ch/personal/gander.
double itpp::quadl | ( | Ftn | f, |
double | a, | ||
double | b, | ||
double | tol = std::numeric_limits<double>::epsilon() |
||
) |
1-dimensional numerical adaptive Lobatto quadrature integration
Calculate the 1-dimensional integral
Uses an adaptive Lobatto quadrature method. See [Gander] for more details. The integrand is specified as a templated function object.
Example:
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http:// www.inf.ethz.ch/personal/gander.
Definition at line 264 of file integration.h.
References itpp::abs(), itpp::sign(), and itpp::sqrt().
ITPP_EXPORT double itpp::quadl | ( | double(*)(double) | f, |
double | a, | ||
double | b, | ||
double | tol = std::numeric_limits< double >::epsilon() |
||
) |
1-dimensional numerical adaptive Lobatto quadrature integration
Calculate the 1-dimensional integral
Uses an adaptive Lobatto quadrature method. See [Gander] for more details. The integrand is specified as a function:
Example:
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http:// www.inf.ethz.ch/personal/gander.
Generated on Sat May 25 2013 16:32:27 for IT++ by Doxygen 1.8.2