Functions on vectors and matrices. More...
Functions | |
template<class T > | |
int | itpp::length (const Vec< T > &v) |
Length of vector. | |
template<class T > | |
int | itpp::size (const Vec< T > &v) |
Length of vector. | |
template<class T > | |
T | itpp::sum (const Vec< T > &v) |
Sum of all elements in the vector. | |
template<class T > | |
Vec< T > | itpp::sum (const Mat< T > &m, int dim=1) |
Sum of elements in the matrix m , either along columns or rows. | |
template<class T > | |
T | itpp::sumsum (const Mat< T > &X) |
Sum of all elements in the given matrix. Fast version of sum(sum(X)) | |
template<class T > | |
T | itpp::sum_sqr (const Vec< T > &v) |
Sum of square of the elements in a vector. | |
template<class T > | |
Vec< T > | itpp::sum_sqr (const Mat< T > &m, int dim=1) |
Sum of the square of elements in the matrix m . | |
template<class T > | |
Vec< T > | itpp::cumsum (const Vec< T > &v) |
Cumulative sum of all elements in the vector. | |
template<class T > | |
Mat< T > | itpp::cumsum (const Mat< T > &m, int dim=1) |
Cumulative sum of elements in the matrix m . | |
template<class T > | |
T | itpp::prod (const Vec< T > &v) |
The product of all elements in the vector. | |
template<class T > | |
Vec< T > | itpp::prod (const Mat< T > &m, int dim=1) |
Product of elements in the matrix m . | |
template<class T > | |
Vec< T > | itpp::cross (const Vec< T > &v1, const Vec< T > &v2) |
Vector cross product. Vectors need to be of size 3. | |
template<class T > | |
Vec< T > | itpp::zero_pad (const Vec< T > &v, int n) |
Zero-pad a vector to size n. | |
template<class T > | |
Vec< T > | itpp::zero_pad (const Vec< T > &v) |
Zero-pad a vector to the nearest greater power of two. | |
template<class T > | |
Mat< T > | itpp::zero_pad (const Mat< T > &m, int rows, int cols) |
Zero-pad a matrix to size rows x cols. | |
template<class T > | |
T | itpp::index_zero_pad (const Vec< T > &v, const int index) |
template<class T > | |
void | itpp::transpose (const Mat< T > &m, Mat< T > &out) |
Transposition of the matrix m returning the transposed matrix in out . | |
template<class T > | |
Mat< T > | itpp::transpose (const Mat< T > &m) |
Transposition of the matrix m . | |
template<class T > | |
void | itpp::hermitian_transpose (const Mat< T > &m, Mat< T > &out) |
template<class T > | |
Mat< T > | itpp::hermitian_transpose (const Mat< T > &m) |
Hermitian transpose (complex conjugate transpose) of the matrix m . | |
template<class Num_T > | |
bool | itpp::is_hermitian (const Mat< Num_T > &X) |
Returns true if matrix X is hermitian, false otherwise. | |
template<class Num_T > | |
bool | itpp::is_unitary (const Mat< Num_T > &X) |
Returns true if matrix X is unitary, false otherwise. | |
template<class Num_T > | |
Mat< Num_T > | itpp::kron (const Mat< Num_T > &X, const Mat< Num_T > &Y) |
Computes the Kronecker product of two matrices. | |
ITPP_EXPORT cmat | itpp::sqrtm (const cmat &A) |
Square root of the complex square matrix A . | |
ITPP_EXPORT cmat | itpp::sqrtm (const mat &A) |
Square root of the real square matrix A . | |
template<class T > | |
int | itpp::rank (const Mat< T > &m, double tol=-1.0) |
Calculate the rank of matrix m . | |
template<> | |
int | itpp::rank (const imat &m, double tol) |
Specialisation of rank() function. | |
template<> | |
int | itpp::rank (const smat &m, double tol) |
Specialisation of rank() function. | |
template<> | |
int | itpp::rank (const bmat &, double) |
Specialisation of rank() function. | |
template<class T > | |
Vec< T > | repmat (const Vec< T > &v, int n) |
Creates a vector with n copies of the vector v . | |
template<class T > | |
Mat< T > | repmat (const Mat< T > &data, int m, int n) |
Creates a matrix with m by n copies of the matrix data . | |
template<class T > | |
Mat< T > | repmat (const Vec< T > &v, int m, int n, bool transpose=false) |
Returns a matrix with m by n copies of the vector data . | |
Functions on vectors and matrices.
Vec<T> itpp::sum | ( | const Mat< T > & | m, |
int | dim = 1 |
||
) |
Sum of elements in the matrix m
, either along columns or rows.
sum(m) = sum(m, 1)
returns a vector where the elements are sum over each column, whereas sum(m, 2)
returns a vector where the elements are sum over each row.
Definition at line 77 of file matfunc.h.
References itpp::Mat< Num_T >::cols(), itpp::Mat< Num_T >::get_col(), itpp::Mat< Num_T >::get_row(), it_assert, itpp::Mat< Num_T >::rows(), itpp::Vec< Num_T >::set_size(), and itpp::sum().
Vec<T> itpp::sum_sqr | ( | const Mat< T > & | m, |
int | dim = 1 |
||
) |
Sum of the square of elements in the matrix m
.
sum(m) = sum(m, 1)
returns a vector where the elements are sum squared over each column, whereas sum(m, 2)
returns a vector where the elements are sum squared over each row
Definition at line 134 of file matfunc.h.
References itpp::Mat< Num_T >::cols(), itpp::Mat< Num_T >::get_col(), itpp::Mat< Num_T >::get_row(), it_assert, itpp::Mat< Num_T >::rows(), itpp::Vec< Num_T >::set_size(), and itpp::sum_sqr().
Mat<T> itpp::cumsum | ( | const Mat< T > & | m, |
int | dim = 1 |
||
) |
Cumulative sum of elements in the matrix m
.
cumsum(m) = cumsum(m, 1)
returns a matrix where the elements are sums over each column, whereas cumsum(m, 2)
returns a matrix where the elements are sums over each row
Definition at line 176 of file matfunc.h.
References itpp::Mat< Num_T >::cols(), itpp::cumsum(), itpp::Mat< Num_T >::get_col(), itpp::Mat< Num_T >::get_row(), it_assert, itpp::Mat< Num_T >::rows(), and itpp::Mat< Num_T >::set_col().
Vec<T> itpp::prod | ( | const Mat< T > & | m, |
int | dim = 1 |
||
) |
Product of elements in the matrix m
.
prod(m) = prod(m, 1)
returns a vector where the elements are products over each column, whereas prod(m, 2)
returns a vector where the elements are products over each row
Definition at line 214 of file matfunc.h.
References itpp::Mat< Num_T >::cols(), itpp::Mat< Num_T >::get_col(), itpp::Mat< Num_T >::get_row(), it_assert, itpp::prod(), and itpp::Mat< Num_T >::rows().
T itpp::index_zero_pad | ( | const Vec< T > & | v, |
const int | index | ||
) |
Return zero if indexing outside the vector v
otherwise return the element index
Definition at line 297 of file matfunc.h.
References itpp::Vec< Num_T >::size().
Referenced by itpp::xcorr_old().
void itpp::hermitian_transpose | ( | const Mat< T > & | m, |
Mat< T > & | out | ||
) |
Hermitian transpose (complex conjugate transpose) of the matrix m
returning the transposed matrix in out
Definition at line 318 of file matfunc.h.
References itpp::Mat< Num_T >::H().
bool itpp::is_hermitian | ( | const Mat< Num_T > & | X | ) |
Returns true if matrix X
is hermitian, false otherwise.
A square matrix is hermitian if
Definition at line 336 of file matfunc.h.
References itpp::Mat< Num_T >::H().
bool itpp::is_unitary | ( | const Mat< Num_T > & | X | ) |
Returns true if matrix X
is unitary, false otherwise.
A square matrix is unitary if
Definition at line 355 of file matfunc.h.
References itpp::Mat< Num_T >::H(), and itpp::inv().
Mat<Num_T> itpp::kron | ( | const Mat< Num_T > & | X, |
const Mat< Num_T > & | Y | ||
) |
Computes the Kronecker product of two matrices.
K = kron(X, Y)
returns the Kronecker tensor product of X
and Y
. The result is a large array formed by taking all possible products between the elements of X
and those of Y
. If X
is (m x n)
and Y
is (p x q)
, then kron(X, Y)
is (m*p x n*q)
.
Definition at line 443 of file matfunc.h.
References itpp::Mat< Num_T >::cols(), itpp::Mat< Num_T >::rows(), and itpp::Mat< Num_T >::set_submatrix().
ITPP_EXPORT cmat itpp::sqrtm | ( | const cmat & | A | ) |
Square root of the complex square matrix A
.
This function computes the matrix square root of the complex square matrix A
. The implementation is based on the Matlab/Octave sqrtm()
function.
Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester Centre for Computational Mathematics, Manchester, England, January 1999
ITPP_EXPORT cmat itpp::sqrtm | ( | const mat & | A | ) |
Square root of the real square matrix A
.
This function computes the matrix square root of the real square matrix A
. Please note that the returned matrix is complex. The implementation is based on the Matlab/Octave sqrtm()
function.
Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester Centre for Computational Mathematics, Manchester, England, January 1999
int itpp::rank | ( | const Mat< T > & | m, |
double | tol = -1.0 |
||
) |
Calculate the rank of matrix m
.
m | Input matrix |
tol | Tolerance used for comparing the singular values with zero. If negative, it is automatically determined. |
Definition at line 493 of file matfunc.h.
References itpp::Mat< Num_T >::cols(), itpp::eps, itpp::Mat< Num_T >::rows(), and itpp::svd().
Referenced by itpp::GF2mat::inverse(), itpp::rank(), and itpp::GF2mat::row_rank().
|
related |
|
related |
|
related |
Returns a matrix with m
by n
copies of the vector data
.
v | Vector to be repeated |
m | Number of times to repeat data vertically |
n | Number of times to repeat data horizontally |
transpose | Specifies the input vector orientation (column vector by default) |
Definition at line 425 of file matfunc.h.
References itpp::transpose().
Generated on Sat May 25 2013 16:32:27 for IT++ by Doxygen 1.8.2