IT++ Logo
Functions
Polynomial Functions
Signal Processing (SP) Module

Functions

double itpp::cheb (int n, double x)
 Chebyshev polynomial of the first kindChebyshev polynomials of the first kind can be defined as follows:

\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]

.

 
vec itpp::cheb (int n, const vec &x)
 Chebyshev polynomial of the first kindChebyshev polynomials of the first kind can be defined as follows:

\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]

.

 
mat itpp::cheb (int n, const mat &x)
 Chebyshev polynomial of the first kindChebyshev polynomials of the first kind can be defined as follows:

\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]

.

 
void itpp::poly (const vec &r, vec &p)
 Create a polynomial of the given rootsCreate a polynomial p with roots r.
 
void itpp::poly (const cvec &r, cvec &p)
 Create a polynomial of the given rootsCreate a polynomial p with roots r.
 
vec itpp::poly (const vec &r)
 Create a polynomial of the given rootsCreate a polynomial p with roots r.
 
cvec itpp::poly (const cvec &r)
 Create a polynomial of the given rootsCreate a polynomial p with roots r.
 
void itpp::roots (const vec &p, cvec &r)
 Calculate the roots of the polynomialCalculate the roots r of the polynomial p.
 
void itpp::roots (const cvec &p, cvec &r)
 Calculate the roots of the polynomialCalculate the roots r of the polynomial p.
 
cvec itpp::roots (const vec &p)
 Calculate the roots of the polynomialCalculate the roots r of the polynomial p.
 
cvec itpp::roots (const cvec &p)
 Calculate the roots of the polynomialCalculate the roots r of the polynomial p.
 
vec itpp::polyval (const vec &p, const vec &x)
 Evaluate polynomialEvaluate the polynomial p (of length $N+1$ at the points x The output is given by

\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \]

.

 
cvec itpp::polyval (const vec &p, const cvec &x)
 Evaluate polynomialEvaluate the polynomial p (of length $N+1$ at the points x The output is given by

\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \]

.

 
cvec itpp::polyval (const cvec &p, const vec &x)
 Evaluate polynomialEvaluate the polynomial p (of length $N+1$ at the points x The output is given by

\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \]

.

 
cvec itpp::polyval (const cvec &p, const cvec &x)
 Evaluate polynomialEvaluate the polynomial p (of length $N+1$ at the points x The output is given by

\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \]

.

 

Detailed Description

Function Documentation

ITPP_EXPORT double itpp::cheb ( int  n,
double  x 
)

Chebyshev polynomial of the first kindChebyshev polynomials of the first kind can be defined as follows:

\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]

.

Parameters
norder of the Chebyshev polynomial
xvalue at which the Chebyshev polynomial is to be evaluated
Author
Kumar Appaiah, Adam Piatyszek (code review)

Definition at line 195 of file poly.cpp.

References itpp::acos(), itpp::acosh(), itpp::cos(), itpp::cosh(), itpp::is_even(), and it_assert.

Referenced by itpp::cheb(), and itpp::chebwin().

ITPP_EXPORT vec itpp::cheb ( int  n,
const vec &  x 
)

Chebyshev polynomial of the first kindChebyshev polynomials of the first kind can be defined as follows:

\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]

.

Parameters
norder of the Chebyshev polynomial
xvector of values at which the Chebyshev polynomial is to be evaluated
Returns
values of the Chebyshev polynomial evaluated for each element of x
Author
Kumar Appaiah, Adam Piatyszek (code review)

Definition at line 209 of file poly.cpp.

References itpp::cheb(), and it_assert_debug.

ITPP_EXPORT mat itpp::cheb ( int  n,
const mat &  x 
)

Chebyshev polynomial of the first kindChebyshev polynomials of the first kind can be defined as follows:

\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]

.

Parameters
norder of the Chebyshev polynomial
xmatrix of values at which the Chebyshev polynomial is to be evaluated
Returns
values of the Chebyshev polynomial evaluated for each element in x.
Author
Kumar Appaiah, Adam Piatyszek (code review)

Definition at line 220 of file poly.cpp.

References itpp::cheb(), and it_assert_debug.

SourceForge Logo

Generated on Sat May 25 2013 16:32:27 for IT++ by Doxygen 1.8.2