IT++ Logo
itcompat.cpp
Go to the documentation of this file.
1 
29 #include <itpp/base/itcompat.h>
30 #include <itpp/base/itassert.h>
31 #include <limits>
32 
34 
35 #ifndef HAVE_TGAMMA
36 // "True" gamma function
37 double tgamma(double x)
38 {
39  double s = (2.50662827510730 + 190.9551718930764 / (x + 1)
40  - 216.8366818437280 / (x + 2) + 60.19441764023333
41  / (x + 3) - 3.08751323928546 / (x + 4) + 0.00302963870525
42  / (x + 5) - 0.00001352385959072596 / (x + 6)) / x;
43  if (s < 0)
44  return -exp((x + 0.5) * log(x + 5.5) - x - 5.5 + log(-s));
45  else
46  return exp((x + 0.5) * log(x + 5.5) - x - 5.5 + log(s));
47 }
48 #endif
49 
50 #if !defined(HAVE_LGAMMA) || (HAVE_DECL_SIGNGAM != 1)
51 // The sign of the Gamma function is returned in the external integer
52 // signgam declared in <math.h>. It is 1 when the Gamma function is positive
53 // or zero, -1 when it is negative. However, MinGW definition of lgamma()
54 // function does not use the global signgam variable.
55 int signgam;
56 // Logarithm of an absolute value of gamma function
57 double lgamma(double x)
58 {
59  double gam = tgamma(x);
60  signgam = (gam < 0) ? -1 : 1;
61  return log(fabs(gam));
62 }
63 #endif
64 
65 #ifndef HAVE_CBRT
66 // Cubic root
67 double cbrt(double x) { return std::pow(x, 1.0 / 3.0); }
68 #endif
69 
70 
71 #ifndef HAVE_EXPM1
72 #ifndef M_LN2
73 #define M_LN2 0.69314718055994530941723212146 // ln(2)
74 #endif
75 // Implementation taken from GSL (http://www.gnu.org/software/gsl/)
76 double expm1(double x)
77 {
78  /* FIXME: this should be improved */
79  if (std::fabs(x) < M_LN2) {
80  /* Compute the taylor series S = x + (1/2!) x^2 + (1/3!) x^3 + ... */
81  double i = 1.0;
82  double sum = x;
83  double term = x / 1.0;
84  do {
85  i++;
86  term *= x / i;
87  sum += term;
88  }
89  while (std::fabs(term) > (std::fabs(sum)
90  * std::numeric_limits<double>::epsilon()));
91  return sum;
92  }
93  else {
94  return std::exp(x) - 1.0;
95  }
96 }
97 #endif // HAVE_EXPM1
98 
99 
100 #ifndef HAVE_ERFC
101 // Complementary error function
102 double erfc(double Y)
103 {
104  int ISW, I;
105  double P[4], Q[3], P1[6], Q1[5], P2[4], Q2[3];
106  double XMIN, XLARGE, SQRPI;
107  double X, RES, XSQ, XNUM, XDEN, XI, XBIG, ERFCret;
108  P[1] = 0.3166529;
109  P[2] = 1.722276;
110  P[3] = 21.38533;
111  Q[1] = 7.843746;
112  Q[2] = 18.95226;
113  P1[1] = 0.5631696;
114  P1[2] = 3.031799;
115  P1[3] = 6.865018;
116  P1[4] = 7.373888;
117  P1[5] = 4.318779e-5;
118  Q1[1] = 5.354217;
119  Q1[2] = 12.79553;
120  Q1[3] = 15.18491;
121  Q1[4] = 7.373961;
122  P2[1] = 5.168823e-2;
123  P2[2] = 0.1960690;
124  P2[3] = 4.257996e-2;
125  Q2[1] = 0.9214524;
126  Q2[2] = 0.1509421;
127  XMIN = 1.0E-5;
128  XLARGE = 4.1875E0;
129  XBIG = 9.0;
130  SQRPI = 0.5641896;
131  X = Y;
132  ISW = 1;
133  if (X < 0) {
134  ISW = -1;
135  X = -X;
136  }
137  if (X < 0.477) {
138  if (X >= XMIN) {
139  XSQ = X * X;
140  XNUM = (P[1] * XSQ + P[2]) * XSQ + P[3];
141  XDEN = (XSQ + Q[1]) * XSQ + Q[2];
142  RES = X * XNUM / XDEN;
143  }
144  else RES = X * P[3] / Q[2];
145  if (ISW == -1) RES = -RES;
146  RES = 1.0 - RES;
147  goto slut;
148  }
149  if (X > 4.0) {
150  if (ISW > 0) goto ulf;
151  if (X < XLARGE) goto eva;
152  RES = 2.0;
153  goto slut;
154  }
155  XSQ = X * X;
156  XNUM = P1[5] * X + P1[1];
157  XDEN = X + Q1[1];
158  for (I = 2;I <= 4;I++) {
159  XNUM = XNUM * X + P1[I];
160  XDEN = XDEN * X + Q1[I];
161  }
162  RES = XNUM / XDEN;
163  goto elin;
164 ulf:
165  if (X > XBIG) goto fred;
166 eva:
167  XSQ = X * X;
168  XI = 1.0 / XSQ;
169  XNUM = (P2[1] * XI + P2[2]) * XI + P2[3];
170  XDEN = XI + Q2[1] * XI + Q2[2];
171  RES = (SQRPI + XI * XNUM / XDEN) / X;
172 elin:
173  RES = RES * exp(-XSQ);
174  if (ISW == -1) RES = 2.0 - RES;
175  goto slut;
176 fred:
177  RES = 0.0;
178 slut:
179  ERFCret = RES;
180  return ERFCret;
181 }
182 #endif
183 
184 
185 #ifndef HAVE_ASINH
186 // Arcus sinhyp
187 double asinh(double x)
188 {
189  return ((x >= 0) ? std::log(x + std::sqrt(x * x + 1))
190  : -std::log(-x + std::sqrt(x * x + 1)));
191 }
192 #endif
193 
194 #ifndef HAVE_ACOSH
195 // Arcus coshyp
196 double acosh(double x)
197 {
198  it_error_if(x < 1, "acosh(): Argument out of range");
199  return std::log(x + std::sqrt(x * x - 1.0));
200 }
201 #endif
202 
203 #ifndef HAVE_ATANH
204 // Arcus tanhyp
205 double atanh(double x)
206 {
207  it_error_if(std::fabs(x) >= 1, "atanh(): Argument out of range");
208  return 0.5 * std::log((x + 1) / (x - 1));
209 }
210 #endif
211 
212 
213 #ifndef HAVE_RINT
214 double rint(double x)
215 {
216  // zero or NaN case
217  if ((x == 0.0) || (x != x))
218  return x;
219 
220  // negative case
221  bool neg = false;
222  if (x < 0.0) {
223  x = -x;
224  neg = true;
225  }
226 
227  double y = std::floor(x + 0.5);
228  int i = static_cast<int>(y);
229  if ((y - x >= 0.5) && (i & 1))
230  --y;
231 
232  return neg ? -y : y;
233 }
234 #endif // HAVE_RINT
235 
SourceForge Logo

Generated on Sat May 25 2013 16:32:18 for IT++ by Doxygen 1.8.2