Functions | |
| cvec | itpp::xcorr (const cvec &x, const cvec &y, const int max_lag=-1, const std::string scaleopt="none") |
| Cross Correlation. | |
| cvec | itpp::xcorr (const cvec &x, const int max_lag=-1, const std::string scaleopt="none") |
| Cross Correlation. | |
| void | itpp::xcorr (const cvec &x, const cvec &y, cvec &out, const int max_lag=-1, const std::string scaleopt="none", bool autoflag=true) |
| Cross Correlation. | |
| mat | itpp::cov (const mat &X, bool is_zero_mean=false) |
| Covariance matrix calculation. | |
| vec | itpp::spectrum (const vec &v, int nfft=256, int noverlap=0) |
| Power spectrum calculation. | |
| vec | itpp::spectrum (const vec &v, const vec &w, int noverlap=0) |
| Power spectrum calculation. | |
| vec | itpp::filter_spectrum (const vec &a, int nfft=256) |
| Power spectrum calculation of a filter. | |
| vec | itpp::filter_spectrum (const vec &a, const vec &b, int nfft=256) |
| Power spectrum calculation of a filter. | |
| void | itpp::xcorr_old (const vec &x, const vec &y, vec &out, const int max_lag=-1, const std::string scaleopt="none") |
| Cross-correlation calculation. | |
| void | itpp::xcorr (const vec &x, const vec &y, vec &out, const int max_lag, const std::string scaleopt) |
| Cross-correlation calculation. | |
| vec | itpp::xcorr_old (const vec &x, const vec &y, const int max_lag=-1, const std::string scaleopt="none") |
| Cross-correlation calculation. | |
| vec | itpp::xcorr (const vec &x, const vec &y, const int max_lag, const std::string scaleopt) |
| Cross-correlation calculation. | |
| vec | itpp::xcorr_old (const vec &x, const int max_lag=-1, const std::string scaleopt="none") |
| Auto-correlation calculation. | |
| vec | itpp::xcorr (const vec &x, const int max_lag, const std::string scaleopt) |
| Auto-correlation calculation. | |
| ITPP_EXPORT void itpp::xcorr_old | ( | const vec & | x, |
| const vec & | y, | ||
| vec & | out, | ||
| const int | max_lag = -1, |
||
| const std::string | scaleopt = "none" |
||
| ) |
Cross-correlation calculation.
z=xcorr(x,y,max_lag), where x and y are length M vectors (M>1), returns the length 2*max_lag+1 cross-correlation sequence z. (lags: -max_lag,...,0,...,max_lag)
For max_lag=-1 the cross-correlation sequence is of length 2*M-1, i.e., the cross-correlation for all possible lags.
Scaling options scaleopt:
=> No scaling of the cross-correlation vector => Scales the cross-correlation vector by 1/M => Scales the cross-correlation vector by 1/(M-abs(lag)) => Normalises the cross-correlation to 1 for zero lag.max_lag <= M-1 x and y are of different length, the shortest one is zero-padded| x | (Input) Vector of samples |
| y | (Input) Vector of samples |
| out | (Output) The cross correlation between x and y. |
| max_lag | (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size 2*maxlag+1. Default value: max_lag=-1 calculates the cross-correlations for all possible lags |
| scaleopt | (Input) Indicates how the cross-correlation function should be scaled. Default value: "none" indicates that no scaling is done |
Definition at line 92 of file sigfun.cpp.
References itpp::energy(), itpp::index_zero_pad(), it_assert, it_error, itpp::max(), and itpp::sqrt().
| ITPP_EXPORT void itpp::xcorr | ( | const vec & | x, |
| const vec & | y, | ||
| vec & | out, | ||
| const int | max_lag, | ||
| const std::string | scaleopt | ||
| ) |
Cross-correlation calculation.
z=xcorr(x,y,max_lag), where x and y are length M vectors (M>1), returns the length 2*max_lag+1 cross-correlation sequence z. (lags: -max_lag,...,0,...,max_lag)
For max_lag=-1 the cross-correlation sequence is of length 2*M-1, i.e., the cross-correlation for all possible lags.
Scaling options scaleopt:
=> No scaling of the cross-correlation vector => Scales the cross-correlation vector by 1/M => Scales the cross-correlation vector by 1/(M-abs(lag)) => Normalises the cross-correlation to 1 for zero lag.max_lag <= M-1 x and y are of different length, the shortest one is zero-padded| x | (Input) Vector of samples |
| y | (Input) Vector of samples |
| out | (Output) The cross correlation between x and y. |
| max_lag | (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size 2*maxlag+1. Default value: max_lag=-1 calculates the cross-correlations for all possible lags |
| scaleopt | (Input) Indicates how the cross-correlation function should be scaled. Default value: "none" indicates that no scaling is done |
Definition at line 82 of file sigfun.cpp.
References itpp::real(), itpp::to_cvec(), and itpp::xcorr().
| ITPP_EXPORT vec itpp::xcorr_old | ( | const vec & | x, |
| const vec & | y, | ||
| const int | max_lag = -1, |
||
| const std::string | scaleopt = "none" |
||
| ) |
Cross-correlation calculation.
z=xcorr(x,y,max_lag), where x and y are length M vectors (M>1), returns the length 2*max_lag+1 cross-correlation sequence z. (lags: -max_lag,...,0,...,max_lag)
For max_lag=-1 the cross-correlation sequence is of length 2*M-1, i.e., the cross-correlation for all possible lags.
Scaling options scaleopt:
=> No scaling of the cross-correlation vector => Scales the cross-correlation vector by 1/M => Scales the cross-correlation vector by 1/(M-abs(lag)) => Normalises the cross-correlation to 1 for zero lag.max_lag <= M-1 x and y are of different length, the shortest one is zero-padded| x | (Input) Vector of samples |
| y | (Input) Vector of samples |
| max_lag | (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size 2*maxlag+1. Default value: max_lag=-1 calculates the cross-correlations for all possible lags |
| scaleopt | (Input) Indicates how the cross-correlation function should be scaled. Default value: "none" indicates that no scaling is done |
Definition at line 148 of file sigfun.cpp.
References itpp::xcorr_old().
| ITPP_EXPORT vec itpp::xcorr | ( | const vec & | x, |
| const vec & | y, | ||
| const int | max_lag, | ||
| const std::string | scaleopt | ||
| ) |
Cross-correlation calculation.
z=xcorr(x,y,max_lag), where x and y are length M vectors (M>1), returns the length 2*max_lag+1 cross-correlation sequence z. (lags: -max_lag,...,0,...,max_lag)
For max_lag=-1 the cross-correlation sequence is of length 2*M-1, i.e., the cross-correlation for all possible lags.
Scaling options scaleopt:
=> No scaling of the cross-correlation vector => Scales the cross-correlation vector by 1/M => Scales the cross-correlation vector by 1/(M-abs(lag)) => Normalises the cross-correlation to 1 for zero lag.max_lag <= M-1 x and y are of different length, the shortest one is zero-padded| x | (Input) Vector of samples |
| y | (Input) Vector of samples |
| max_lag | (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size 2*maxlag+1. Default value: max_lag=-1 calculates the cross-correlations for all possible lags |
| scaleopt | (Input) Indicates how the cross-correlation function should be scaled. Default value: "none" indicates that no scaling is done |
Definition at line 66 of file sigfun.cpp.
References itpp::real(), itpp::to_cvec(), and itpp::xcorr().
| ITPP_EXPORT cvec itpp::xcorr | ( | const cvec & | x, |
| const cvec & | y, | ||
| const int | max_lag = -1, |
||
| const std::string | scaleopt = "none" |
||
| ) |
Cross Correlation.
returns the cross-correlation vector r.
Definition at line 74 of file sigfun.cpp.
References itpp::xcorr().
| ITPP_EXPORT vec itpp::xcorr_old | ( | const vec & | x, |
| const int | max_lag = -1, |
||
| const std::string | scaleopt = "none" |
||
| ) |
Auto-correlation calculation.
z=xcorr(x,max_lag), where x and is a length M vector (M>1), returns the length 2*max_lag+1 auto-correlation sequence z. (lags: -max_lag,...,0,...,max_lag)
For max_lag=-1 the auto-correlation sequence is of length 2*M-1, i.e., the cross correlation for all possible lags.
Scaling options scaleopt:
=> No scaling of the auto-correlation vector => Scales the auto-correlation vector by 1/M => Scales the auto-correlation vector by 1/(M-abs(lag)) => Normalises the auto-correlation so that acf(x)=1 for zero lag.max_lag <= M-1 | x | (Input) Vector of samples |
| max_lag | (Input) Maximum lag for which the auto-correlation is calculated. The output vector is of size 2*maxlag+1. Default value max_lag=-1 calculates the auto-correlations for all possible lags. |
| scaleopt | (Input) Indicates how the auto-correlation function should be scaled. Default value: "none" indicates that no scaling is done. |
Definition at line 43 of file sigfun.cpp.
Referenced by itpp::xcorr_old().
| ITPP_EXPORT vec itpp::xcorr | ( | const vec & | x, |
| const int | max_lag, | ||
| const std::string | scaleopt | ||
| ) |
Auto-correlation calculation.
z=xcorr(x,max_lag), where x and is a length M vector (M>1), returns the length 2*max_lag+1 auto-correlation sequence z. (lags: -max_lag,...,0,...,max_lag)
For max_lag=-1 the auto-correlation sequence is of length 2*M-1, i.e., the cross correlation for all possible lags.
Scaling options scaleopt:
=> No scaling of the auto-correlation vector => Scales the auto-correlation vector by 1/M => Scales the auto-correlation vector by 1/(M-abs(lag)) => Normalises the auto-correlation so that acf(x)=1 for zero lag.max_lag <= M-1 | x | (Input) Vector of samples |
| max_lag | (Input) Maximum lag for which the auto-correlation is calculated. The output vector is of size 2*maxlag+1. Default value max_lag=-1 calculates the auto-correlations for all possible lags. |
| scaleopt | (Input) Indicates how the auto-correlation function should be scaled. Default value: "none" indicates that no scaling is done. |
Definition at line 50 of file sigfun.cpp.
References itpp::real(), and itpp::to_cvec().
Referenced by itpp::xcorr().
| ITPP_EXPORT cvec itpp::xcorr | ( | const cvec & | x, |
| const int | max_lag = -1, |
||
| const std::string | scaleopt = "none" |
||
| ) |
Cross Correlation.
returns the auto-correlation vecotr r.
Definition at line 58 of file sigfun.cpp.
References itpp::xcorr().
| ITPP_EXPORT void itpp::xcorr | ( | const cvec & | x, |
| const cvec & | y, | ||
| cvec & | out, | ||
| const int | max_lag = -1, |
||
| const std::string | scaleopt = "none", |
||
| bool | autoflag = true |
||
| ) |
Cross Correlation.
Computes the cross-correlatin and returns in vector out
Definition at line 156 of file sigfun.cpp.
References itpp::abs(), itpp::ceil_i(), itpp::concat(), itpp::conj(), itpp::elem_mult(), itpp::fft(), itpp::ifft(), it_warning, itpp::linspace(), itpp::log2(), itpp::max(), itpp::pow2i(), itpp::sqrt(), itpp::sum(), itpp::to_cvec(), and itpp::zero_pad().
| ITPP_EXPORT mat itpp::cov | ( | const mat & | X, |
| bool | is_zero_mean = false |
||
| ) |
Covariance matrix calculation.
Calculates the covariance matrix of the observations in the matrix
. Each row is an observation and each column represents a variable.
The covariance is normalized with the number of observations
. The mean value is removed before calculation.
Set is_zero_mean if X already has zero mean.
Definition at line 226 of file sigfun.cpp.
References itpp::mean().
Referenced by pcamat().
| ITPP_EXPORT vec itpp::spectrum | ( | const vec & | v, |
| int | nfft = 256, |
||
| int | noverlap = 0 |
||
| ) |
Power spectrum calculation.
Calculates the power spectrum using the Welch method and a Hanning window.
Definition at line 267 of file sigfun.cpp.
References itpp::abs(), itpp::elem_mult(), itpp::fft(), itpp::hanning(), it_assert_debug, itpp::levels2bits(), itpp::pow2i(), itpp::sqr(), itpp::to_cvec(), and itpp::zero_pad().
Referenced by itpp::Punctured_Convolutional_Code::calculate_spectrum(), itpp::Convolutional_Code::calculate_spectrum(), itpp::Punctured_Convolutional_Code::fast(), itpp::Convolutional_Code::fast(), and itpp::Rice_Fading_Generator::set_doppler_spectrum().
| ITPP_EXPORT vec itpp::spectrum | ( | const vec & | v, |
| const vec & | w, | ||
| int | noverlap = 0 |
||
| ) |
Power spectrum calculation.
Calculates the power spectrum using using the Welch method and the supplied window w.
Definition at line 296 of file sigfun.cpp.
References itpp::abs(), itpp::elem_mult(), itpp::energy(), itpp::fft(), it_assert_debug, itpp::levels2bits(), itpp::pow2i(), itpp::sqr(), itpp::to_cvec(), and itpp::zero_pad().
| ITPP_EXPORT vec itpp::filter_spectrum | ( | const vec & | a, |
| int | nfft = 256 |
||
| ) |
Power spectrum calculation of a filter.
Calculates the power spectrum of a filter with transfer function a(z)
Definition at line 325 of file sigfun.cpp.
References itpp::abs(), itpp::fft(), itpp::sqr(), and itpp::to_cvec().
| ITPP_EXPORT vec itpp::filter_spectrum | ( | const vec & | a, |
| const vec & | b, | ||
| int | nfft = 256 |
||
| ) |
Power spectrum calculation of a filter.
Calculates the power spectrum of a filter with transfer function a(z)/b(z)
Definition at line 332 of file sigfun.cpp.
References itpp::abs(), itpp::elem_div(), itpp::fft(), itpp::sqr(), and itpp::to_cvec().
Generated on Sat Jul 6 2013 10:54:29 for IT++ by Doxygen 1.8.2