IT++ Logo
Namespaces | Functions
matfunc.h File Reference

Various functions on vectors and matrices - header file. More...

#include <itpp/base/mat.h>
#include <itpp/base/math/log_exp.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/algebra/inv.h>
#include <itpp/base/algebra/svd.h>
#include <itpp/itexports.h>

Go to the source code of this file.

Namespaces

namespace  itpp
 itpp namespace
 

Functions

template<class T >
int itpp::length (const Vec< T > &v)
 Length of vector.
 
template<class T >
int itpp::size (const Vec< T > &v)
 Length of vector.
 
template<class T >
itpp::sum (const Vec< T > &v)
 Sum of all elements in the vector.
 
template<class T >
Vec< T > itpp::sum (const Mat< T > &m, int dim=1)
 Sum of elements in the matrix m, either along columns or rows.
 
template<class T >
itpp::sumsum (const Mat< T > &X)
 Sum of all elements in the given matrix. Fast version of sum(sum(X))
 
template<class T >
itpp::sum_sqr (const Vec< T > &v)
 Sum of square of the elements in a vector.
 
template<class T >
Vec< T > itpp::sum_sqr (const Mat< T > &m, int dim=1)
 Sum of the square of elements in the matrix m.
 
template<class T >
Vec< T > itpp::cumsum (const Vec< T > &v)
 Cumulative sum of all elements in the vector.
 
template<class T >
Mat< T > itpp::cumsum (const Mat< T > &m, int dim=1)
 Cumulative sum of elements in the matrix m.
 
template<class T >
itpp::prod (const Vec< T > &v)
 The product of all elements in the vector.
 
template<class T >
Vec< T > itpp::prod (const Mat< T > &m, int dim=1)
 Product of elements in the matrix m.
 
template<class T >
Vec< T > itpp::cross (const Vec< T > &v1, const Vec< T > &v2)
 Vector cross product. Vectors need to be of size 3.
 
template<class T >
Vec< T > itpp::zero_pad (const Vec< T > &v, int n)
 Zero-pad a vector to size n.
 
template<class T >
Vec< T > itpp::zero_pad (const Vec< T > &v)
 Zero-pad a vector to the nearest greater power of two.
 
template<class T >
Mat< T > itpp::zero_pad (const Mat< T > &m, int rows, int cols)
 Zero-pad a matrix to size rows x cols.
 
template<class T >
itpp::index_zero_pad (const Vec< T > &v, const int index)
 
template<class T >
void itpp::transpose (const Mat< T > &m, Mat< T > &out)
 Transposition of the matrix m returning the transposed matrix in out.
 
template<class T >
Mat< T > itpp::transpose (const Mat< T > &m)
 Transposition of the matrix m.
 
template<class T >
void itpp::hermitian_transpose (const Mat< T > &m, Mat< T > &out)
 
template<class T >
Mat< T > itpp::hermitian_transpose (const Mat< T > &m)
 Hermitian transpose (complex conjugate transpose) of the matrix m.
 
template<class Num_T >
bool itpp::is_hermitian (const Mat< Num_T > &X)
 Returns true if matrix X is hermitian, false otherwise.
 
template<class Num_T >
bool itpp::is_unitary (const Mat< Num_T > &X)
 Returns true if matrix X is unitary, false otherwise.
 
template<class Num_T >
Mat< Num_T > itpp::kron (const Mat< Num_T > &X, const Mat< Num_T > &Y)
 Computes the Kronecker product of two matrices.
 
ITPP_EXPORT cmat itpp::sqrtm (const cmat &A)
 Square root of the complex square matrix A.
 
ITPP_EXPORT cmat itpp::sqrtm (const mat &A)
 Square root of the real square matrix A.
 
template<class T >
int itpp::rank (const Mat< T > &m, double tol=-1.0)
 Calculate the rank of matrix m.
 
template<>
int itpp::rank (const imat &m, double tol)
 Specialisation of rank() function.
 
template<>
int itpp::rank (const smat &m, double tol)
 Specialisation of rank() function.
 
template<>
int itpp::rank (const bmat &, double)
 Specialisation of rank() function.
 
template<class T >
Mat< T > itpp::diag (const Vec< T > &v, const int K=0)
 Create a diagonal matrix using vector v as its diagonal.
 
template<class T >
void itpp::diag (const Vec< T > &v, Mat< T > &m)
 Create a diagonal matrix using vector v as its diagonal.
 
template<class T >
Vec< T > itpp::diag (const Mat< T > &m)
 Get the diagonal elements of the input matrix m.
 
template<class T >
Mat< T > itpp::bidiag (const Vec< T > &main, const Vec< T > &sup)
 Returns a matrix with the elements of the input vector main on the diagonal and the elements of the input vector sup on the diagonal row above.
 
template<class T >
void itpp::bidiag (const Vec< T > &main, const Vec< T > &sup, Mat< T > &m)
 Returns in the output variable m a matrix with the elements of the input vector main on the diagonal and the elements of the input vector sup on the diagonal row above.
 
template<class T >
void itpp::bidiag (const Mat< T > &m, Vec< T > &main, Vec< T > &sup)
 Returns the main diagonal and the diagonal row above in the two output vectors main and sup.
 
template<class T >
Mat< T > itpp::tridiag (const Vec< T > &main, const Vec< T > &sup, const Vec< T > &sub)
 Returns a matrix with the elements of main on the diagonal, the elements of sup on the diagonal row above, and the elements of sub on the diagonal row below.
 
template<class T >
void itpp::tridiag (const Vec< T > &main, const Vec< T > &sup, const Vec< T > &sub, Mat< T > &m)
 Returns in the output matrix m a matrix with the elements of main on the diagonal, the elements of sup on the diagonal row above, and the elements of sub on the diagonal row below.
 
template<class T >
void itpp::tridiag (const Mat< T > &m, Vec< T > &main, Vec< T > &sup, Vec< T > &sub)
 Returns the main diagonal, the diagonal row above, and the diagonal row below int the output vectors main, sup, and sub.
 
template<class T >
itpp::trace (const Mat< T > &m)
 The trace of the matrix m, i.e. the sum of the diagonal elements.
 
template<class T >
Vec< T > itpp::reverse (const Vec< T > &in)
 Reverse the input vector.
 
template<class T >
Vec< T > itpp::rvectorize (const Mat< T > &m)
 Row vectorize the matrix [(0,0) (0,1) ... (N-1,N-2) (N-1,N-1)].
 
template<class T >
Vec< T > itpp::cvectorize (const Mat< T > &m)
 Column vectorize the matrix [(0,0) (1,0) ... (N-2,N-1) (N-1,N-1)].
 
template<class T >
Mat< T > itpp::reshape (const Mat< T > &m, int rows, int cols)
 Reshape the matrix into an rows*cols matrix.
 
template<class T >
Mat< T > itpp::reshape (const Vec< T > &v, int rows, int cols)
 Reshape the vector into an rows*cols matrix.
 
ITPP_EXPORT bool itpp::all (const bvec &testvec)
 Returns true if all elements are ones and false otherwise.
 
ITPP_EXPORT bool itpp::any (const bvec &testvec)
 Returns true if any element is one and false otherwise.
 

Detailed Description

Various functions on vectors and matrices - header file.

Author
Tony Ottosson, Adam Piatyszek, Conrad Sanderson, Mark Dobossy and Martin Senst

Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)

This file is part of IT++ - a C++ library of mathematical, signal processing, speech processing, and communications classes and functions.

IT++ is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

IT++ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with IT++. If not, see http://www.gnu.org/licenses/.


Definition in file matfunc.h.

SourceForge Logo

Generated on Sat May 25 2013 16:32:24 for IT++ by Doxygen 1.8.2