IT++ Logo
misc_stat.cpp
Go to the documentation of this file.
1 
29 #include <itpp/base/algebra/svd.h>
30 #include <itpp/stat/misc_stat.h>
31 
32 
33 namespace itpp
34 {
35 
36 double mean(const vec &v)
37 {
38  return sum(v) / v.length();
39 }
40 
41 std::complex<double> mean(const cvec &v)
42 {
43  return sum(v) / double(v.size());
44 }
45 
46 double mean(const svec &v)
47 {
48  return (double)sum(v) / v.length();
49 }
50 
51 double mean(const ivec &v)
52 {
53  return (double)sum(v) / v.length();
54 }
55 
56 double mean(const mat &m)
57 {
58  return sum(sum(m)) / (m.rows()*m.cols());
59 }
60 
61 std::complex<double> mean(const cmat &m)
62 {
63  return sum(sum(m)) / static_cast<std::complex<double> >(m.rows()*m.cols());
64 }
65 
66 double mean(const smat &m)
67 {
68  return static_cast<double>(sum(sum(m))) / (m.rows()*m.cols());
69 }
70 
71 double mean(const imat &m)
72 {
73  return static_cast<double>(sum(sum(m))) / (m.rows()*m.cols());
74 }
75 
76 
77 double norm(const cvec &v)
78 {
79  double E = 0.0;
80  for (int i = 0; i < v.length(); i++)
81  E += std::norm(v[i]);
82 
83  return std::sqrt(E);
84 }
85 
86 double norm(const cvec &v, int p)
87 {
88  double E = 0.0;
89  for (int i = 0; i < v.size(); i++)
90  E += std::pow(std::norm(v[i]), p / 2.0); // Yes, 2.0 is correct!
91 
92  return std::pow(E, 1.0 / p);
93 }
94 
95 double norm(const cvec &v, const std::string &)
96 {
97  return norm(v, 2);
98 }
99 
100 /*
101  * Calculate the p-norm of a real matrix
102  * p = 1: max(svd(m))
103  * p = 2: max(sum(abs(X)))
104  */
105 double norm(const mat &m, int p)
106 {
107  it_assert((p == 1) || (p == 2),
108  "norm(): Can only calculate a matrix norm of order 1 or 2");
109 
110  if (p == 1)
111  return max(sum(abs(m)));
112  else
113  return max(svd(m));
114 }
115 
116 /*
117  * Calculate the p-norm of a complex matrix
118  * p = 1: max(svd(m))
119  * p = 2: max(sum(abs(X)))
120  */
121 double norm(const cmat &m, int p)
122 {
123  it_assert((p == 1) || (p == 2),
124  "norm(): Can only calculate a matrix norm of order 1 or 2");
125 
126  if (p == 1)
127  return max(sum(abs(m)));
128  else
129  return max(svd(m));
130 }
131 
132 // Calculate the Frobenius norm of matrix m for s = "fro"
133 double norm(const mat &m, const std::string &s)
134 {
135  it_assert(s == "fro", "norm(): Unrecognised norm");
136  double E = 0.0;
137  for (int r = 0; r < m.rows(); ++r) {
138  for (int c = 0; c < m.cols(); ++c) {
139  E += m(r, c) * m(r, c);
140  }
141  }
142  return std::sqrt(E);
143 }
144 
145 // Calculate the Frobenius norm of matrix m for s = "fro"
146 double norm(const cmat &m, const std::string &s)
147 {
148  it_assert(s == "fro", "norm(): Unrecognised norm");
149  double E = 0.0;
150  for (int r = 0; r < m.rows(); ++r) {
151  for (int c = 0; c < m.cols(); ++c) {
152  E += std::norm(m(r, c));
153  }
154  }
155  return std::sqrt(E);
156 }
157 
158 
159 double variance(const cvec &v)
160 {
161  int len = v.size();
162  double sq_sum = 0.0;
163  std::complex<double> sum = 0.0;
164  const std::complex<double> *p = v._data();
165 
166  for (int i = 0; i < len; i++, p++) {
167  sum += *p;
168  sq_sum += std::norm(*p);
169  }
170 
171  return (double)(sq_sum - std::norm(sum) / len) / (len - 1);
172 }
173 
174 double moment(const vec &x, const int r)
175 {
176  double m = mean(x), mr = 0;
177  int n = x.size();
178  double temp;
179 
180  switch (r) {
181  case 1:
182  for (int j = 0; j < n; j++)
183  mr += (x(j) - m);
184  break;
185  case 2:
186  for (int j = 0; j < n; j++)
187  mr += (x(j) - m) * (x(j) - m);
188  break;
189  case 3:
190  for (int j = 0; j < n; j++)
191  mr += (x(j) - m) * (x(j) - m) * (x(j) - m);
192  break;
193  case 4:
194  for (int j = 0; j < n; j++) {
195  temp = (x(j) - m) * (x(j) - m);
196  temp *= temp;
197  mr += temp;
198  }
199  break;
200  default:
201  for (int j = 0; j < n; j++)
202  mr += std::pow(x(j) - m, double(r));
203  break;
204  }
205 
206  return mr / n;
207 }
208 
209 
210 double skewness(const vec &x)
211 {
212  int n = x.size();
213 
214  double k2 = variance(x) * n / (n - 1); // 2nd k-statistic
215  double k3 = moment(x, 3) * n * n / (n - 1) / (n - 2); //3rd k-statistic
216 
217  return k3 / std::pow(k2, 3.0 / 2.0);
218 }
219 
220 double kurtosisexcess(const vec &x)
221 {
222  int n = x.size();
223  double m2 = variance(x);
224  double m4 = moment(x, 4);
225 
226  double k2 = m2 * n / (n - 1); // 2nd k-statistic
227  double k4 = (m4 * (n + 1) - 3 * (n - 1) * m2 * m2) * n * n / (n - 1) / (n - 2) / (n - 3); //4th k-statistic
228 
229  return k4 / (k2*k2);
230 }
231 
232 } // namespace itpp
SourceForge Logo

Generated on Sat May 25 2013 16:32:24 for IT++ by Doxygen 1.8.2